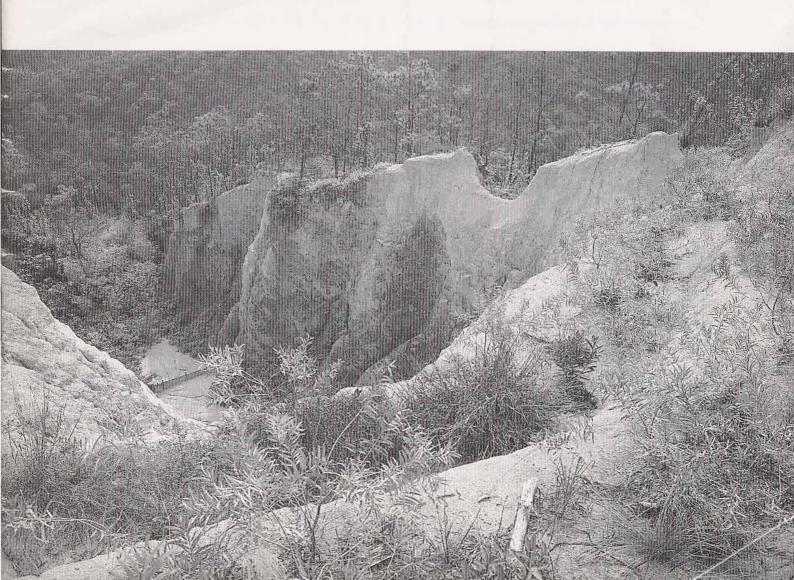
GEOLOGICAL SOCIETY OF HONG KONG

香港地質學會


NEWSLETTER

通 訊

第八卷 第二期

一九九零年六月

Vol.8, Part II, June 1990

GEOLOGICAL SOCIETY OF HONG KONG

			Office telephone
General Committee: (1989-1990)	Mr M J Atherton Mr K W Lee Dr D R Workman Mr C M Lee Mr E P Y Chau Mr H L Law Dr R J Neller Dr L Owen Mr W G Roberts Dr R Shaw Mr C H Tan Mr K M Wong	(Chairman) (Vice-Chairman) (Acting Secretary) (Treasurer) (Editor)	363-8344 x793 890-9211 859-2831 363-8344 x591 475-0421 x211 839-2493 695-2528 339-7121 575-7108 723-0441 893-6988 332-5621
Ex-officio Membership Secretary	Mr S Gilbert		
Marine Studies Group	Mr C Dutton Dr R Shaw	(Chairman) (Secretary)	

Editorial Sub-committee Ed Chau, Richard Langford & David Workman

NOTES FOR THE GUIDANCE OF CONTRIBUTORS TO THE NEWSLETTER

General: Articles of a technical nature, as well as reports of interesting events, reviews and other topical items are welcome. Contributions must be short, although exceptions may be made at the discretion of the Society. Tables, figures and half-tone plates must be kept to a minimum and must all be on separate sheets. Typescripts, enquiries and all correspondence should be addressed to the Secretary, Geological Society of Hong Kong, c/o Department of Geography and Geology, University of Hong Kong, Pokfulam Road, Hong Kong. The Society does not assume copyright of material published in the Newsletter. Any other previous, current or expected future use of such material by the author must be stated at the time of submission.

Typescripts: Typescripts must be accurate, legible and in their final form. Two complete copies must be sent to the Secretary. Typescripts should be double-spaced, including references, on one side only of A4 paper, with 25 mm margins on all sides. All pages should bear the authors name and be numbered serially. Text supplied on diskette using any conventional word processing package (Wordperfect, Wordstar, Multimate, etc) is preferred to hard copy.

Illustrations: Send the originals of all illustrations, each marked with the author's name. Diagrams should be in black on tracing material or smooth white paper or board, with a line weight suitable for reduction. A metric scale should be included, and North Point (or where relevant, coordinates of latitude and longitude) on all maps. Avoid using fine tones and lines on figures that are likely to be reduced.

References: The author is responsible for ensuring that all references are correct. The list of references should be given in full, with no abbreviations.

Offprints: The Society does not provide authors with free offprints of items published in the Newsletter, but will obtain quotations on behalf of authors of technical articles who may wish to purchase offprints from the printer.

CONTENTS

	Page No
POLYGONAL HILL RIDGES ON WEATHERED GRANITE IN HONG KONG B P Ruxton & M R Peart	2
SUPPLEMENTARY REPORT ON THE DISCOVERY OF LOWER AND MIDDLE DEVONIAN FOSSILS IN HONG KONG C M Lee, J H Chen, M J Atherton, G X He, S Q Wu, K W Lai & P S Nau	16
SPOREPOLLEN FLORA FROM PING CHAU ISLAND MIRS BAY, HONG KONG P S Nau, Q Q Jiang & Q J Wu	25
BOAT TRIPS, SEPTEMBER-OCTOBER 1990	29
18 MONTHS WITH THE GEOLOGICAL SURVEY UNIT (1967-68) S C Lee	30
EPHEMERA	32
REPORT ON FIELD TRIP TO TSING SHAN, SUNDAY 1 JULY 1990 (ABORTED TRIP TO CHEK LAP KOK) M J Atherton & R L Langford	32

POLYGONAL HILL RIDGES ON WEATHERED GRANITE IN HONG KONG

B P Ruxton & M R Peart

- 1 Canberra College of Advanced Education, Australia
- 2 Department of Geography and Geology, University of Hong Kong

Abstract

Near circular and near polygonal upstanding ridge crests occur at three localities in deeply weathered granite in Hong Kong. At Tai Lam Chung a group of broken polygons occur in a dissected basin, when reconstructed they form an orthogonal-polygonal network. The polygons are about 100 metres across with a local relief of 30 to 40 metres. The ridge crest pattern bears no relation to the structural lineaments of the granite. The centres of the polygonal network, however, shown preferred directions at 40° and 135° which are the major structural trends in the region. Joint spacing of 100 to 120 m, and extra weathering at the intersection of joints, would provide centres of swelling. The impinging of pressure circles would cause a polygonal framework of stiffness in the weathered granite on the undissected surface which would etch out on erosion.

Introduction

Discovery of polygonal hill ridges in Papua New Guinea (Ruxton 1978) and in New South Wales, Australia (Ruxton 1979) prompted a search for similar features elsewhere. The Hong Kong examples, all on weathered granite, were discovered from the air in 1980. Polygon means a closed, roughly equidimensional, figure bounded by several sides some of which may be curved (Lachenbruch 1963). Hill ridges are upstanding and the normal processes of erosion break through one side of the polygons. Nests of polygonal hill ridges occur and intergrade laterally into orthogonal ridge patterns and then rectangular ridge patterns of normal erosional development. The polygonal hill ridges are best developed on formerly gently sloping surfaces. This terrain differs from the alveolate patterns of Hurault (1967) in that centres are depressed not raised. The pattern is similar to grain growth in thin films (Frost et al 1986).

Hong Kong is a mountainous terrain formerly under rain forest with an average annual rainfall of 2130 mm. The annual average temperature is 21.6° C. and the climate causes deep weathering. A two cycle landscape occurs on the granite. The polygonal hill ridges occur where subjacent gently sloping surfaces are deeply weathered and then dissected (Ruxton & Berry, 1957). After deforestation some 800 years ago annual burning of the grass has led to gullying and the formation of local badlands with erosion up to 17 m/1000 years (Lam 1977). In the areas studied the general form of the ridges is still the same as that prior to deforestation. Occurrences of polygonal hills in Hong Kong range from 110 to 300 m altitude and are shown in Figure 1. The best polygonal ridge development is in the Tai Lam Chung catchment and this will be described first.

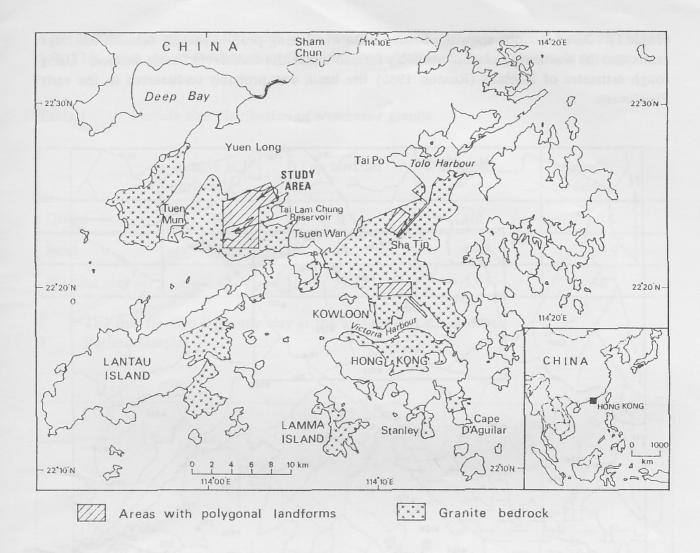


Figure 1 Location map of occurrences of polygonal hill ridges in Hong Kong

Tai Lam Chung

The catchment of the Tai Lam Chung reservoir is underlain by porphyritic leucogranite (Allen & Stephens 1971). Fine-grained granite occurs in the higher hills and the remainder is medium-grained granite. Patches of greisen occur and the area is traversed by many faults and thrusts with associated shear zones (Peng 1986). The drainage shows preferred lineaments at 145°, 82° and 40° (Figure 2). The hill ridges show directions in all points of the compass and are often curved so there is no apparent relation between hill ridge patterns and bedrock structure. The northern part of the catchment is basin-like in form (Figure 3) with accordant ridge crests at 112 to 123 m which are within the range of Berry's (1986) 130 m erosional level. The basin is surrounded by high hills frequently over 200 m in height. The dissected basin has high drainage density with close adjustment to the lineaments in the granite (So 1983). Some major streamlets, however, are partly centripetal, superimposed on the underlying structure (Figure 2). The relief is 30 to 40 metres and the stream spacing is about 200 m. Ridge crests are rounded and narrow and slopes are straight or concave (Figure 4). Headwall slumping is common.

The weathering profiles are 20 to 30 m in thickness with few corestones. In general the profile passes down into grus. Material near the top of the profile consists of approximately equal parts of sand and silt/clay with some selective loss of fines by erosion. This is also the case for material near the base of the grus which may be indicative of a high degree of decomposition

(Table 1). Road sections show the zones of the weathering profiles passing beneath the ridge crests and the weathering profiles probably formed under the undissected basin surface. Using rough estimates of leaching (Ruxton 1980) the basin was probably undissected in the early Pleistocene.

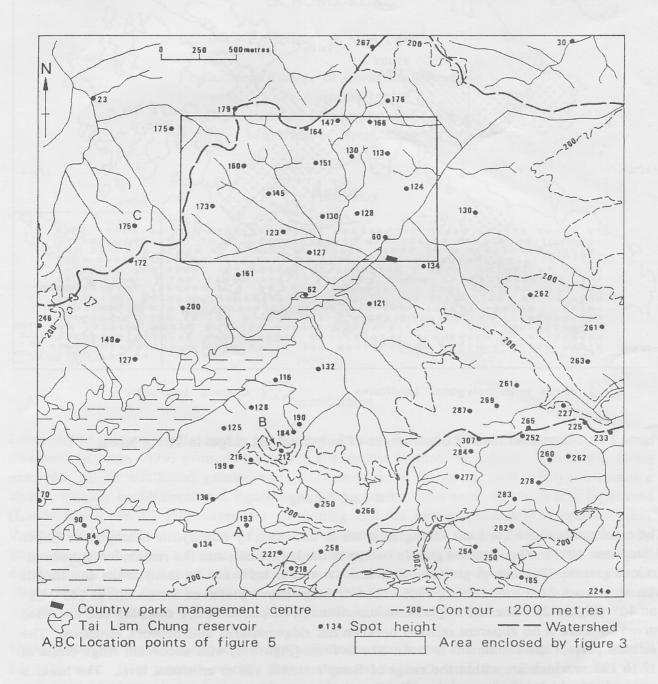


Figure 2 Tai Lam Chung catchment showing ridge crest heights in metres

The polygonal hill ridges

Compartments of granite bounded by joints or shear zones may be only 150 m across. One such compartment (Figure 5a) bears at its centre a nearly complete circular ridge crest. Three of these occur (Figure 6). The next stage, with a 300 m compartment (Figure 5b), bears both a curved ridge crest and two open polygonal ridge crests with one triradial junction (120°). Finally

a 350 m compartment bears five open polygonal ridge crests with four triradial junctions (Figure 5c). This series shows the transition from circular to polygonal and from simple to complex.

Table 1 Particle size distribution of weathered granite

	Sample at surface	Top horizon	4 m depth	Around corestone
Gravel	Nil	0.5	Nil	0.5
Sand	57	40	44.5	69.9
Silt plus clay	432	59.52	55.5	30

- 1 The fine fraction is mostly clay at the surface and silt at depth
- 2 Surface samples

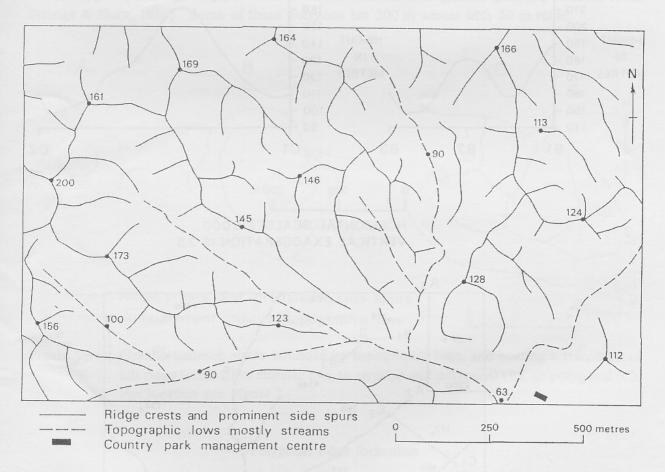


Figure 3 Ridge crest pattern in northern Tai Lam Chung Basin (location Figure 2)

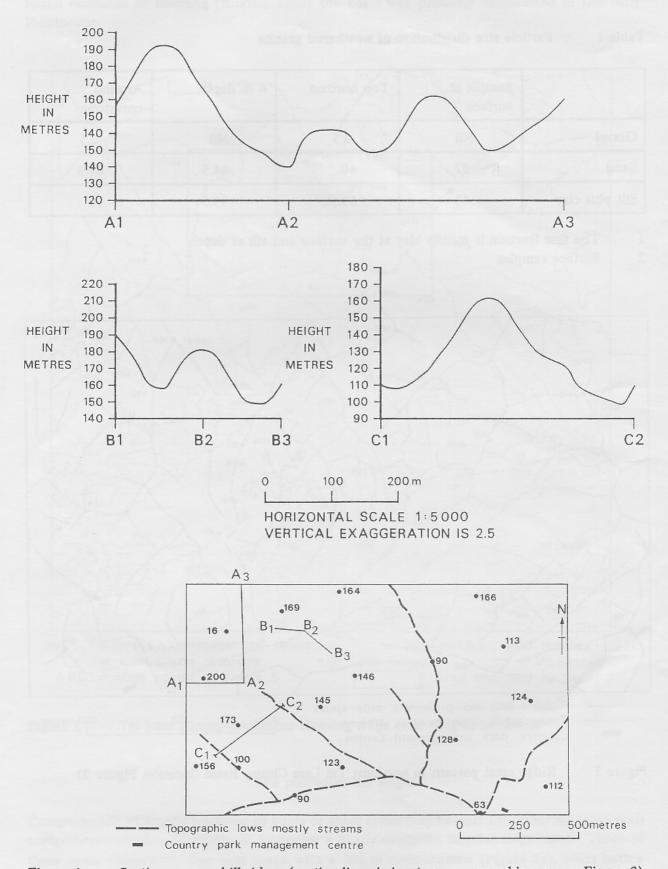


Figure 4 Sections across hill ridges (section lines in inset, area covered is same as Figure 3)

Figure 6 shows the reconstructed hill ridge pattern believed to have been dormant prior to the dissection of the basin drawn from the aerial photograph. The incomplete ridge pattern was completed by extending ridge crests, joining ridges pointing towards each other, and when three or more sides were present completing the final side. The fact that a completed network emerged, which can be envisaged under the stereoscope, suggests that the undissected basin form had this pattern. The network shows clearly a polygonal nest in the east and rectangular patterns from normal erosion in the north. Larger polygons are more irregular than small ones and may be partitioned by a bridge which is as method of subdivision to average size and demonstrates the principle of homogeneity (Conrad 1964).

The dispersion pattern of the centres of the centres of the polygons (Figure 7) shows alignments of 135° and 40° which are the major structural directions in Hong Kong. Intersection joints 100 to 120 m apart would give much of the pattern observed. In limestone country sinkholes form at these intersections (Williams 1972) and perhaps in granite country deeper weathering occurs in the broken rock at these points (Thomas 1974).

The polygonal hill ridges at Sha Tin and Kowloon are sometimes perfect broken hexagons on dissected, gently sloping, deeply weathered surfaces on medium-grained granite (Addison, 1986, Strange & Shaw, 1986). Some of these polygons are 200 m across with 50 m relief.

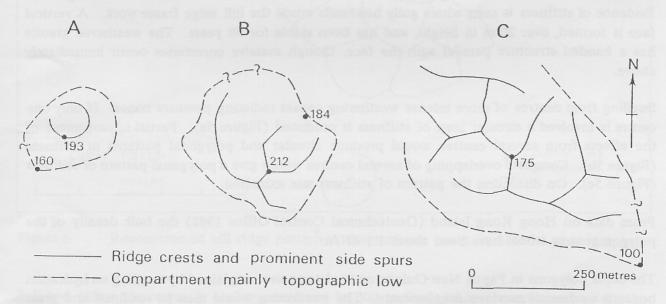


Figure 5 Granite bedrock plates bounded by topographic lows, and bearing a transition of hill ridge forms from circular (A), to circular and polygonal (B), to polygonal (C). For location see Figure 2

Polygonal ridge formation

A suggested sequence of events for polygonal ridge formation is; the formation of less resistant centres at the intersection of joints; the swelling from these centres; and the formation of a resistant framework of hill ridges. This sequence may involve weathering, swelling, stiffness, cementation and compaction.

1 Weathering. Solution is the cause of polygonal karst (Williams 1972) which is very similar in form to the Hong Kong polygons. Solution depressions of similar diameter are also known in

diorite (Le Grand 1952) and a range of depressions are known in granite (Twidale 1982). At joint intersections it is expected that the deeper and more thoroughly weathered material, with an angle of friction of the debris at about 37°, would be eroded preferentially to the grus on the ridge crests with an angle of friction of about 44° (Geotechnical Control Office 1982).

- 2 Swelling. Claims that granite expands on weathering were made by Merrill (1895), Branner (1896) and Folk & Patton (1982). In the early stages of weathering the production of clay products may outstrip the leaching (Blackwelder 1925; Kiersch & Treasher 1955; Twidale 1982). The platelets of Figure 5 are reminiscent of the unloading plates of Hack (1966) in North Carolina. Maybe expansion on unloading is succeeded by expansion during rock hydration and early weathering (Nishioka & Harada 1958; Thomas 1974). Grus can swell on hydration (McLean & Gribble 1979) and some weathered granite swells (Gordon et al 1958; Duncan et al 1968). The sequence of clay mineral changes on weathering of granite in Hong Kong (Lumb & Chack-Fan 1975) is allophane, fully hydrated halloysite, halloysite and kaolin. The fully hydrated halloysite phase would probably cause the swelling of the weathered debris (cf Kazda 1961). In grus the content of fully hydrated halloysite may increase with depth (Wolff 1967). Only very slight expansion occurs. Pressure builds up around centres causing tightening of the fabric where pressure waves meet and produces a polygonal pattern of stiffened saprolite.
- 3 Stiffness. Stiffness is a tightened interlocking of the grains of the weathered granite. Evidence of stiffness is seen where gully headwalls erode the hill ridge frame work. A vertical face is formed, over 20 m in height, and has been stable for 50 years. The weathered granite has a banded structure parallel with the face, though massive corestones occur immediately above.

Swelling from centres of more intense weathering causes radiating pressure zones. If only one centre is involved a circular zone of stiffness is produced (Figure 5a). Partial impingement of the effects from several centres would produce circular and polygonal patterns of stiffness (Figure 5b). Complete overlapping of several centres would give a polygonal pattern of stiffness (Figure 5c). On dissection the pattern of stiffness was exhumed.

From data on Hong Kong Island (Geotechnical Control Office 1982) the bulk density of the polygon centres would have been about 1.1 kN/m³.

The Sepik polygons in Papua New Guinea on mudstone were explained by swelling on hydration beneath a cover of pervious fanglomerate. The weathering would then be confined and great pressures could be built up perhaps even forming thrust planes along which reverse mass movement could take place afterwards. The claim of constant volume alteration (Ollier 1967) may not then be universal. The best polygons at Tai Lam Chung are in the lowest areas of the basin where a previous colluvial cover is most likely to have occurred.

Alternate hypotheses

1 Compaction. Earthquake vibrations may cause settling and compaction in patterns (Corbel 1954). Earthquakes were probably common in the Pleistocene in Hong Kong when the basin was undissected as is shown by the abundance of large debris flows at that time (Ruxton 1985). A similar polygonal pattern on a large scale was shown for fault blocks caused by the Tokyo earthquake (Miyabe 1935).

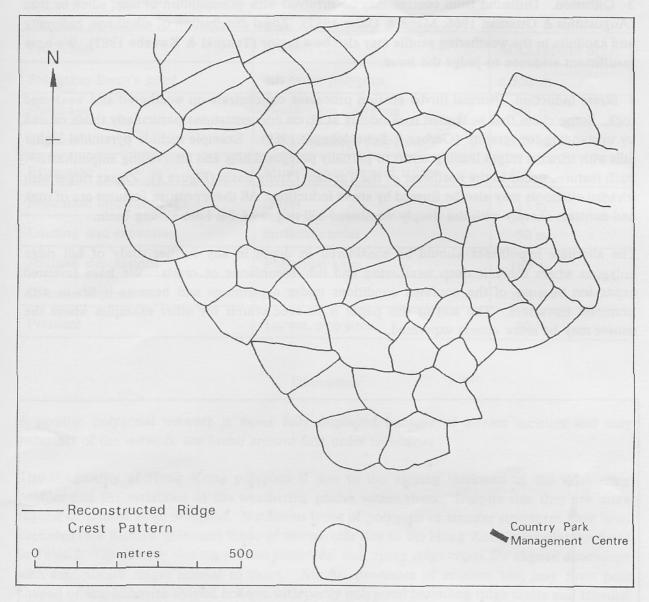


Figure 6 Reconstructed hill ridge pattern in the northern basin from aerial photographs

Ball and pillow structures is coal measures up to 500 m from faults are explained as due to shock waves emanating from the fault lines (Weaver 1976). If two crossing faults are activated at the same time (at 135° and 40° Figure 7) compaction of saprolite in polygonal patterns is a strong possibility due to seismic wave interference effects.

2 Cementation. The reconstructed pattern of hill ridges (Figure 6) is very similar to giant dessication fissures in the great playas (Neal et al 1968) and may thus be partly a contraction phenomena. Contraction could not be by open fissures or negative polygons would forms. Many cracks and loosened zones heal when wet and provide pathways for vigorous water circulation. Cementation of these zones by iron and clay may follow and cause overall strengthening of them. Weathered granite is strongly cemented elsewhere in Hong Kong (Ruxton 1987). Cementation, causing polygons, is also reported for calcrete wedge development (Goudie 1973) and tepee formation in lagoons. The patterns of groundwater circulation beneath the piedmont surface may have assisted cementation in some places and solution in others.

- 3 Diffusion. Diffusion from centres may be involved with precipitation of clay, silica or iron (Augustithis & Otteman 1966; Mann & Ollier 1985). Zonal distribution of allophane, halloysite and kaolinite in the weathering profile may also be a factor (Tsuzuki & Kawabe 1983). We have insufficient evidence to judge the issue.
- 4 Stress induction. Normal fluvial erosion processes concentrate on weathered and weakened rock. Some claim that weakened rock occurs at stress concentrations particularly those caused by upstanding topography (Gerber & Scheideggger 1969). Example include pyramidal higher hills with triradial ridges leading down to partially polygonal hills and intervening amphitheatres. Such features occur to the northeast of the Tai Lam Chung basin (Figure 1). Zigzag ridges with triradial offshoots may also be formed by stress induction. All these positive features are of rock and contrast sharply with the deeply weathered hill ridges of Tai Lam Chung basin.

The alternate hypotheses should be considered in depth in any further study of hill ridge polygons where there is deep weathering and sub-accordance of crests. We have favoured expansion because of the confined conditions under a piedment and because it fits in with examples elsewhere. The aim of this paper is to seed search for other examples where the causes may be more clearly expressed.

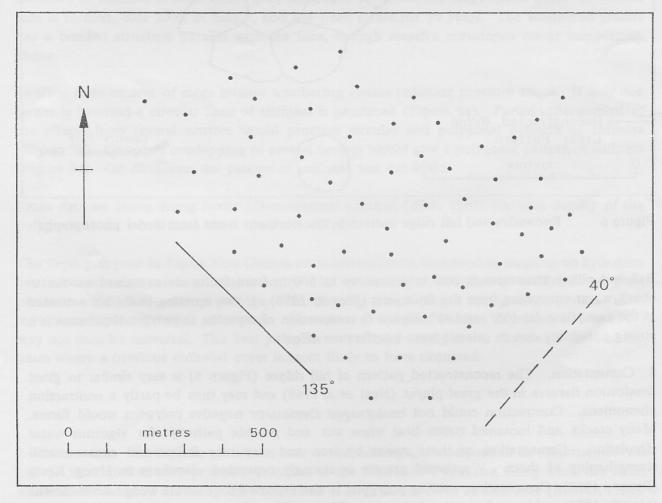


Figure 7 Dispersion of polygonal centres from Figure 6 showing dominant trends at 135° and 40°

Table 2 Origin of comparable polygons and circles

PROCESS	EXAMPLE	MAXIMUM SIZE	
Extension Earth's crust	5th order polygons	c 500 m	
Shrinkage	Dessication polygons	300 m	
Expansion	Calcrete wedge polygons	200 m	
Expansion	Mudstone polygonal ridges	400 m	
Expansion and shrinkage	Gilgai	15 m	
Loading and expansion	Surficial circles	50 m	
Solution depressions	Polygonal karst	180 m	
Solution depressions	In diorite	100 m	
Pressure	Tepees, polygons	40 m	

Discussion

A positive polygonal network is never fully displayed because of stream incision and only remnants of the network are found around first order tributaries.

The irregularity of Hong Kong polygons is due to the varying thickness of the weathering profiles and the variations of the weathering grades within them. Despite this they are more regular than most large polygons. Numerous types of polygons or circular structures have been recorded (see Ruxton 1978) and those of comparable size to the Hong Kong examples are listed in Table 2. On strongly sloping ground sinusoidal and zigzag ridge crests are aligned downslope with subordinate ridges normal to them. Normal processes of erosion, too, may form pear shaped or amphitheatre shaped hollows with partly polygonal bounding ridge crests and triradial junctions but they seldom form a tessellation.

The Tai Lam Chung rectangular ridges can form without the need for pressure swelling because the zones of the weathering profile, going upwards, are increasingly less resistant towards the surface (Ruxton & Berry 1957). On exhumation of the basin surface the soft centres would be most eroded leaving a framework of hill ridges at the divides.

All three types of polygonal hill ridges in Papua New Guinea, New South Wales (Australia) and Hong Kong, could be controlled by regularly spaced intersecting joint systems and weathering induced swelling confined beneath a previous piedmont colluvial or alluvial cover. In Hong Kong the former colluvial cover was probably thin and patchy.

There is a relationship between the radius of the circle or polygon (50 m) and the depth of weathering (20 to 30 m). In Papua New Guinea and Hong Kong this ratio is about 2:1. Each polygon or circle has its own tablet of weathered debris albeit in Hong Kong joined to the neighbouring ones. The swelling of the tablet causes both weakness at the surface in the centre and strength on impingement with neighbours.

Table 3 Suggested geomorphic history of the hill ridges

6	Deforestation, drying out, regolith contraction, cracks on ridges	800 years
5	Ridge network reduced by fluvial erosion and slumping under rain forest	Upper Pleistocene
4	Piedmont is exhumed and dissected into polygonal hill ridges	Middle Pleistocene
3	Confined weathering profile swells from centres forming stiff framework	Early
2	Deep weathering of piedmont, deeper at joint intersections	Pleistocene
1	Parallel slope retreat forms piedmont with cover of pervious colluvium	?Pliocene

The history of the Tai Lam Chung dissected basin is given in Table 3. Parallel slope retreat was suggested by Ruxton & Berry (1957) but other forms of basin formation are possible. Continuous downwearing is not favoured because the weathering profiles would be expected to be much more variable laterally. The age of the weathering profiles is taken as roughly half a million years (Ruxton 1980). Low permeating pressures of 2 kg/cm² (Kazda 1961) over long time periods would be sufficient to cause patterned stiffness. Since exhumation the polygonal pattern has been much eaten into by normal fluvial erosion and no perfect polygons are found. Perfect polygons are extremely rare in Papua New Guinea despite 2000 km² of patterns. Of interest is the change from slumping under rain forest to ridge cracking by dessication under grass. Contraction, therefore, has only occurred in the last 800 years since deforestation. Compaction and cementation could have accompanied other changes anytime in the history.

Conclusion

Uniformly spaced joint intersections in granite caused centres of initial weathering under a small, colluvium covered, piedmont. As weathering spread a pressure front due to swelling of fully hydrated halloysite radiated outwards. Circles of pressure, seen as circular ridges, impinged and became orthogonal or polygonal. Most of the polygonal frameworks are five sided as in polygonal karst. Later, lateral variations developed in the weathering profiles from the centre to the rim of the compartments. Bulk densities probably varied from 1.1 to 1.7 kN/m and shear strength probably from friction angles of 37° to 44°. Material at the rim of the polygons has stood for over 50 years as 20 m vertical faces. Cementation may also be a factor and cracks due to contraction and swelling may have been healed and reinforced. These processes caused an orthogonal-polygonal framework. On dissection the framework pattern was exhumed as negative centres and positive surrounding hill ridges.

The generation of a compressional planar stress system from a centre depends on there being homogeneous elastic weathered debris of generally uniform thickness with few corestones to dampen the pressure wave. Uniformity is essential as there is no buckling or flowage visible. Some buried slump shear surfaces could have been thrusts but this has not yet been confirmed.

References

- ADDISON R (1986). Geology of Sha Tin. Geotechnical Control Office, Hong Kong
- ALLEN P M & STEPHENS E A (1971). Report on the Geological Survey of Hong Kong 1967-1969. Government Printer, Hong Kong
- AUGUSTITHIS S & OTTEMANN J (1966). On diffusion rings and spheroidal weathering. Chemical Geology Vol 1 p 201-209
- BERRY L (1961). Erosion surfaces and emerged beaches in Hong Kong. Geological Society of America Bulletin No 72 p 1383-1394
- BLACKWELDER E (1925). Exfoliation as a phase of rock weathering. *Journal of Geology* No 33 p 793-806
- BRANNER J C (1986). Decomposition of rocks in Brazil. Bulletin of the Geological Society of America No 7 p 255-314
- CONRAD V (1946). Polygon nets and their physical development. American Journal of Science No 240 p 277-296
- CORBEL T (1954). Les Sols Polygonaux. Observations, experience, genese. Revue Geomorphologie Dynamique p 49-68
- DUNCAN M, DUNNE M H & PETTY S (1968). Swelling characteristics of rock. Water Power May p 185-192
- FOLK R L & PATTON E B (1982). Buttressed expansion of granite and development of grus in Central Texas. Z Geomporph N F No 26 p 17-32
- FROST H J, WHANG J & THOMPSON C W (1986). Modelling of grain growth in thin films. In: Annealing Processes Recovery, Recrystallisation and Grain Growth. Eds N Hansen, D J Jensen, T Leffers and R Ralph. RISO National Laboratory, Roskilde, Denmark
- GEOTECHNICAL CONTROL OFFICE (1982). *Mid-levels study*. Public Works Department, Hong Kong Government
- GERBER E & SCHEIDEGGER A E (1969). Stress-induced weathering of rock masses. Eclogae Geologica Helvetica No 62 p 401-415
- GORDON M, TRACEY J I & ELLIS M W (1958). Geology of the Arkansas Bauxite region. Professional Papers United States Geological Survey p 299
- GOUDIE A (1973). Duricrusts in tropical and subtropical landscapes. Clarendon Press, Oxford
- HACK J T (1966). Circular patterns and exfoliation in crystalline terrane, Grandfather Mountain area, North Carolina. Geological Society of America Bulletin No 77 p 975-986

- HURAULT J (1967). L'erosion regressive dans les regions tropicales humides et la Genese des inselbergs granitique. Etudes Photo-interpretation 3, Institute Geographique Nationale Paris
- KAZDA J (1961). Study of the swelling pressure of soils. Proceedings 5th International Conference Soil Mechanics and Foundation Engineering No 1 p 140-142
- KIERSCH G A & TREASHER R C (1955). Folsom dam project, Central California. *Economic Geology* Vol 50 p 271-310
- LACHENBRUCH A H (1963). Contraction theory of ice-wedge polygons. Proceedings Permafrost International Conference Natural Research Council No 1287 p 63-71
- LAM K C (1977). Patterns and rates of slopewash on the badlands of Hong Kong. Earth Surface Processes Vol 2 p 319-332
- LEGRAND H E (1952). Solution depressions in diorite in North Carolina. *American Journal of Science* No 250 p 566-585
- LUMB P & CHACK-FAN L (1975). Clay mineralogy of the Hong Kong soils. 4th SE Asia Conference on Soil Engineering, Kuala Lumpar, Malaysia, 7th-10th April 1975 p 41-50
- MANN A W & OLLIER C D (1985). Chemical diffusion and ferricrete formation. Catena Supplement No 6 p 151-157
- MCLEAN A C & GRIBBLE C D (1979). Geology for Civil Engineers. George Allen & Unwin, London
- MERRILL G P (1895). Disintegration of the granitic rocks of the District of Columbia. Bulletin Geological Society of America No 6 p 321-332
- MIYABE N (1935). Notes on the block structure of the earth's crust. Tokyo Imperial University Earthquake Research Institute Bulletin No 13 p 280-285
- NEAL J T, LANGER A M & KERR P F (1968). Giant dessication polygons of Great Basin playas. Geological Society of America Bulletin No 79 p 69-90
- NISHIOKA S & HARADA T (1958). Elongation of stones due to adsorption of water. 12th Meeting Cement Association of Japan No 12 p 66-68
- OLLIER C D (1967). Spheroidal weathering, exfoliation and constant volume alteration. Zeitschrift für Geomorphologie No 11 p 103-108
- PENG C J (1986). Geology. In: A Geography of Hong Kong. Eds T N Chiu & C L So. Oxford University Press, Oxford
- RUXTON B P (1978). Polygonal ridge patterns on the dissected Sepik Piedmont Plain, New Guinea. Geological Society of Australia No 25 p 285-294

- RUXTON B P (1979). Terrain patterns and processes II current research. Proceedings of the International Symposium on Resource Engineering and Technology, January 8-11, 1979, Bombay Vol 1 p 1-14
- RUXTON B P (1980). Slope problems in Hong Kong. A geological appraisal. Hong Kong Engineer Vol 8 p 31-39
- RUXTON B P (1985). The structure of some debris flows in Hong Kong. Geological Society of Hong Kong Bulletin No 2 p 105-111
- RUXTON B P (1987). Iron cementation in boulder colluvium matrix under Hong Kong city. Geological Society of Hong Kong Bulletin No 3 p 359-371
- RUXTON B P & BERRY L (1957). Weathering of granite and associated erosional features in Hong Kong. Geological Society of America Bulletin No 68 p 1263-1291
- SO C L (1983). Landforms. In: A Geography of Hong Kong. Eds T N Chiu & C L So. Oxford University Press, Oxford
- STRANGE P J & SHAW R (1986). Geology of Hong Kong Island and Kowloon. Geotechnical Control Office, Hong Kong
- THOMAS M F (1974). Tropical Geomorphology. Macmillan, London
- TSUZUKI Y & KAWABE I (1983). Polymorphic transformations of kaolin minerals in aqueous solutions. Geochimica et Cosmochimica Acta No 47 p 59-66
- TWIDALE C R (1982). Granite Landforms. Elsevier, Amsterdam
- WEAVER T D (1976). Seismically-induced load structures in the Basal Coal Measures, South Wales. Geological Magazine No 113 p 535-543
- WILLIAMS P W (1972). Morphometric analysis of polygonal karst in New Guinea. Geological Society of America Bulletin No 83 p 761-796
- WOLFF R G (1967). Weathering of Woodstock Granite, near Baltimore, Maryland. American Journal of Science No 265 p 106-117

SUPPLEMENTARY REPORT ON THE DISCOVERY OF LOWER AND MIDDLE DEVONIAN FOSSILS IN HONG KONG

C M Lee¹, J H Chen², M J Atherton¹, G X He², S Q Wu², K W Lai³ & P S Nau⁴

- 1 Department of Civil and Structural Engineering, Hong Kong Polytechnic
 - 2 Nanjing Institute of Geology and Paleontology, Academia Sinica
 - 3 Geotechnical Control Office, Hong Kong Government
 - 4 Department of Geography and Geology, University of Hong Kong

Localities

After the report with the title "A Report on the Discovery of Lower Devonian Fossils in Hong Kong" (C M Lee et al 1990) was completed in August 1989, the cooperative team further found abundant fossils of Devonian age in the Plover Cove area, New Territories, Hong Kong. The new collection includes about 300 specimens classified into five kinds of fossil; plants, ostracods, bivalves, conchostracans and fishes obtained from 18 new localities in addition to the previously reported 5 localities. The localities are demonstrated in Figure 1, and the new finds with the principal description of lithological characteristics at the 18 localities are summarized as follows:

- Locality 4' Plants from the purple-red siltstone
- Locality 6 Plants, ostracods, bivalves and conchostracans from the brown-red mudstone
- Locality 7 Ostracods from the brown-yellow siltstone
- Locality 8 Ostracods, bivalves and conchostracans from the red mudstone and brown-vellow siltstone
- Locality 9 Ostracods and fishes from the red mudstone and siltstone
- Locality 10 Plants from the brown-yellow siltstone
- Locality 11 Plants from the brown-red siltstone
- Locality 12 Ostracods and fishes from the purple-red siltstone and brown-yellow mudstone
- Locality 13 Ostracods from the purple-red siltstone
- Locality 14 Plants, bivalves and conchostracans from the brown-red mudstone
- Locality 15 Plants and fishes from the brown-yellow mudstone
- Locality 16 Fishes from the purple-red siltstone and mudstone
- Locality 17 Plants from the brown-yellow siltstone
- Locality 18 Bivalves, plants, conchostracans and fishes from the brown-yellow mudstone and siltstone
- Locality 19 Bivalves and conchostracans from the purple-red and brown-yellow mudstone and siltstone
- Locality 20 Plants, conchostracans and bivalves from the purple-red mudstone and siltstone
- Locality 21 Fishes from the brown-red mudstone
- Locality 22 Conchostracans and ostracods from the purple-red mudstone and brown-yellow siltstone
- Locality 23 Plants from the purple-red siltstone and mudstone

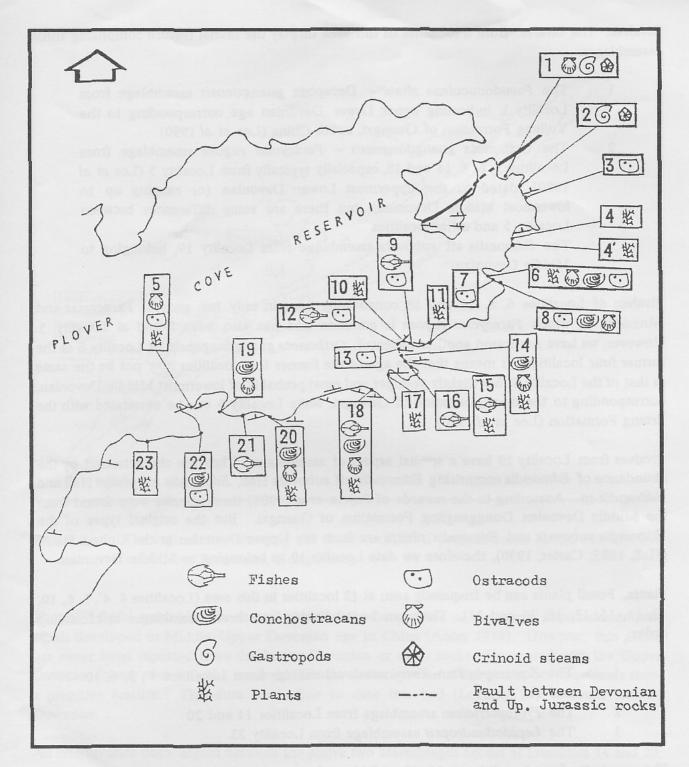


Figure 1 Devonian fossil localities in the Plover Cove area, New Territories, Hong Kong

Age

This paper gives the results of identification of fossil bivalves and plants from the new localities and discusses the geological age, taking account of the former study, although further study of other fossil kinds will be made in the near future.

Bivalves. The bivalves from 8 localities of this area display the faunal feature comprising three assemblages:

- The Pseudonuculana zhaoi Deceptrix guangxiensis assemblage from Locality I, indicating upper Lower Devonian age corresponding to the Yujiang Formation of Guangxi, south China (Lee et al 1990)
- The Orthonota guangdongensis Paracyclas rugosa assemblage from Localities 5, 6, 8, 14 and 18, especially typically from Locality 5 (Lee et al 1990), dated to the uppermost Lower Devonian (or ranging up to lowermost Middle Devonian), but there are some differences between Locality 5 and other localities
- The Edmondia aff subovata assemblage from Locality 19, belonging to Middle Devonian.

Bivalves of Localities 6, 8, 14 and 18 consistently contain only two genera, *Paracyclas* and *Nuculites*, of which *Paracyclas rugosa* is common and has also been found at Locality 5. However, we have not found another indicator, *Orthonota guangdongensis*, of Locality 5 at the former four localities. It means that the age of the former four localities may not be the same as that of the Locality 5, but slightly younger and most probably of lowermost Middle Devonian, corresponding to the Sipai Formation of Guangxi, while Locality 5 can be correlated with the Ertang Formation (Lee *et al* 1990).

Bivalves from Locality 19 have a special aspect of assemblage. They are characterized by the abundance of *Edmondia* comprising *Edmondia* aff *subovata* Hall, *Edmondia* aff *philipi* Hall and *Edmondia* sp. According to the records of Pojeta *et al* (1986) these species were found from the Middle Devonian Donggangling Formatiom of Guangxi. But the original types of the *Edmondia subovata* and *Edmondia philipi* are from the Upper Devonian in the United States (Hall, 1885; Caster, 1930), therefore we date Locality 19 as belonging to Middle Devonian.

Plants. Fossil plants can be frequently seen at 12 localities in this area (Localities 4, 4', 5, 6, 10, 11, 14, 15, 17, 18, 20 and 23). They can be subdivided into three assemblages in ascending order:

- 1 The Zosterophyllum-Taeniocrada assemblage from Localities 4', 5, 6, 10 and 11
- 2 The Protopteridium assemblage from Localities 14 and 20
- 3 The Lepidodendropsis assemblage from Locality 23.

The remainder from Localities 4, 15, 17 and 18 are indeterminable.

The first assemblage contains Zosterophyllum, Taeniocrada, Psilophytopsida? and Psilophytites?. The genus Zosterophyllum is an indicator of the Lower Devonian age in south China; it is also regarded as an indicator of that age widely throughout the world (Li & Cai 1977, 1978, 1979; Hang 1979; Cai & Li 1982; Fang et al 1985). So it is undoubtedly true that this assemblage belongs to the Lower Devonian age. This is very important for the biostratigraphical correlation of the Hong Kong strata with other places in southeast China because this genus was formerly also found in similar horizons to the present assemblage such as the Lower Devonian of Hueiji county of northwest Guangdong and of Jiangyong county of southwest Hunan.

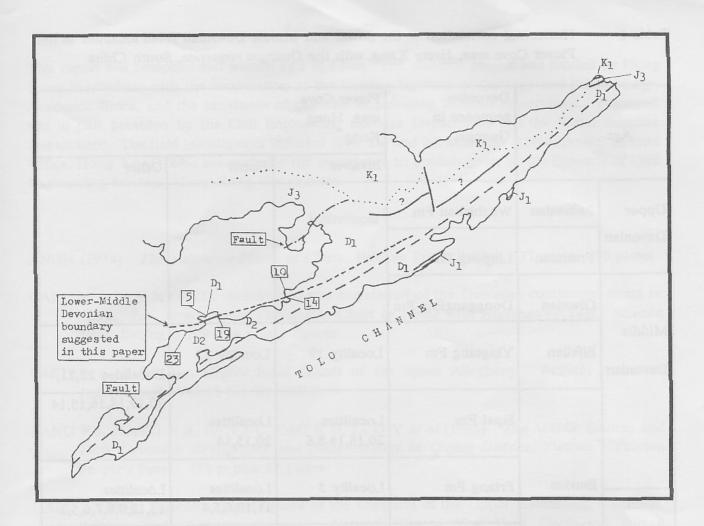


Figure 2 Geological map showing the division of the Devonian rocks in the Plover Cove area, New Territories, Hong Kong

The third floral assemblage is characterized by the occurrence of the genus Lepidodendropsis, which developed in Middle-Upper Devonian age in China (Anon 1974). However, this genus has never been reported from the Lower Devonian or older rocks. Compared with the Upper Devonian forms, even with the upper Middle Devonian species of the genus, our specimens show a primitive feature. Therefore we incline to date this bed (Locality 23) to lower Middle Devonian.

An intermediate floral aspect between the above two assemblages occurs at Localities 14 and 20; it is represented by cf *Protopteridium minutum* Halle and *Protopteridium*? sp of the second assemblage. However, this assemblage has no advanced elements such as Protolepidodendrales which occur in the third assemblage, although the genus *Protopteridium* is restricted to the Middle Devonian in age in China. We correlate this assemblage to the uppermost Lower Devonian or lowermost Middle Devonian due to its close location with the *Zosterophyllum* bearing-bed (Locality 10).

The geological ages of these localities are synthetically shown in Table 1, determined by J H Chen and S Q Wu.

Table 1 Horizontal correlation of the Lower and Middle Devonian fossil localities in the Plover Cove area, Hong Kong, with the Guangxi sequence, South China

Age Upper Famenian Devonian Frasmian Givetian Middle Devonian Eifelian		Devonian sequence in Guangxi	Plover Cove area, Hong Kong				
			Bivalves	Plants	Other		
	Famenian	Wuzhishan Fm			m ging up to man between		
Devonian	Frasmian	Liujiang Fm			Mindes to		
	Givetian	Donggangling Fm					
	Eifelian	Yingtang Fm	Locality 19	Locality 23	Localities 22,21,		
Lower Devonian	ing to the l ostion (E.e.	Sipai Fm	Localities 20,18,14,8,6	Localities 20,15,14	20,19,18,16,15,14		
	Emsian	Ertang Fm	Locality 5	Localities 11,10,6,5,4	Localities 13,12,9,8,7,6,5,3		
	Siegenian	Yujiang Fm	Locality 1	ici maris escre bre sa metroriganis vec	Locality 1		
	schiels I Zin	Nagaoling Fm	wedugitkesk at sya natuce	ell socio al egald planet Upper I lo	he the defense same. Men developed in 16		
	Gedinian	Lianhuashan Fm	elebro G stobe elebro G stobe elebro enlla	and those because of the second of the secon	as never peen tepe of tevonianscams, eve of primitive teature. Tevonian.		

Conclusion

The Devonian rocks to the east Plover Cove can be divided into two; Lower Devonian in the north and Middle Devonian in the south. Between them the lithological boundary is not clear because of the gradual change. However, an age boundary of the Lower-Middle Devonian is inserted between Locality 5 and Locality 19 on the basis of bivalves, and between Locality 10 and 14 based on plants (Figure 3).

Acknowledgments

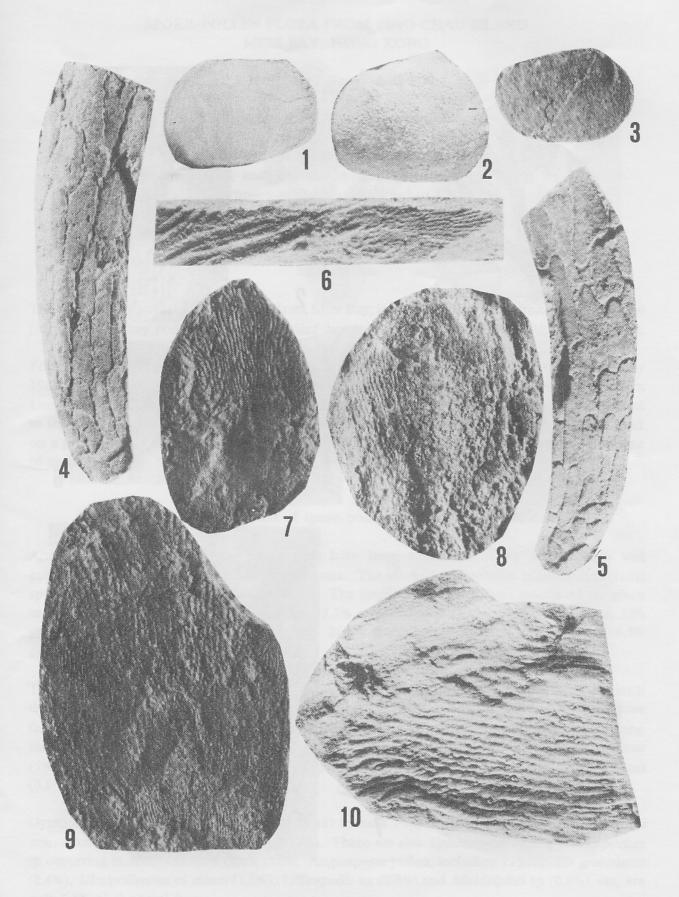
This report was compiled and written by J H Chen. The research project was funded by Hong Kong Polytechnic with the cooperation of the Nanjing Institute of Geology and Paleontology, Academia Sinica, and the assistance of the Civil Engineering Services Department. Transport was in part provided by the Civil Engineering Services Department and the Water Supplies Department. The field investigators included K W Lai and his assistants (Geotechnical Control Office, Hong Kong), who acknowledge the permission to publish given by the Director of Civil Engineering Services, Hong Kong Government.

References

- ANON (1974). The Paleozoic Plants of China. Science Press, Beijing, 277 p plus 130 plates
- CAI CY & LIXX (1982). Subdivision and correlation of the Devonian continental strata in China. In: Stratigraphic Correlation Chart in China with Explanatory Text. Science Press, Beijing p 109-118 plus 5 figures
- CASTER K E (1930). Higher fossil faunas of the upper Allegheny. Bulletin American Paleontologist Vol 15 No 58, 322 p
- FANG F S, JIANG N R, FAN J C, CAO R O, LI D Y et al (1985). The Middle Silurian and Early Devonian Stratigraphy and Palaeontology in Qujing District, Yunnan. Yunnan People's Press. 171 p plus 37 plates
- HALL J (1885). Description and figures of the Dimyaria of the Upper Helderberg, Hamilton, Portage, and Chemung Groups. Natural History New York Geological Survey, Paleontology Vol 5 Pt 1 Lamellibranchiata 2. 540 p
- LEE C M, CHEN J H, ATHERTON M J & HE G X (1990). A report on the discovery of Lower Devonian fossils in Hong Kong. Geological Society of Hong Kong Newsletter Vol 8 Pt 1 p 5-17
- LIXX & CAICY (1977). Early Devonian Zosterophyllum-remains from southwest China. Acta Palaeontologica Sinica Vol 16 No 11 p 12-34 plus 5 plates
- LIXX & CAICY (1978). A type-section of Lower Devonian strata in southwest China with brief notes on the succession and correlation of its plant assemblages. *Acta Geologica Sinica* pt 1 p 1-12 plus 2 plates
- LIXX & GAICY (1979). Devonian floras in China. Acta Stratigraphica Sinica Vol 16 No 1 p 12-34 plus 5 plates
- POJETA JJ, ZHANG RJ & YANG ZY (ed J J POJETA) (1986). Devonian rocks and Lower and Middle Devonian pelecypods of Guangxi, China, and the Traverse Group of Michigan. *United States Geological Survey Professional Paper* 1934-A-G 108 p plus 66 plates
- WANG G X (1979). The discovery of Lower Devonian Zosterophyllum flora in Hunan and the stratigraphical significance. Acta Stratigraphica Sinica Vol 3 No 2

Explanation for Plates

Plate 1


(All fossils in this plate are enlarged)

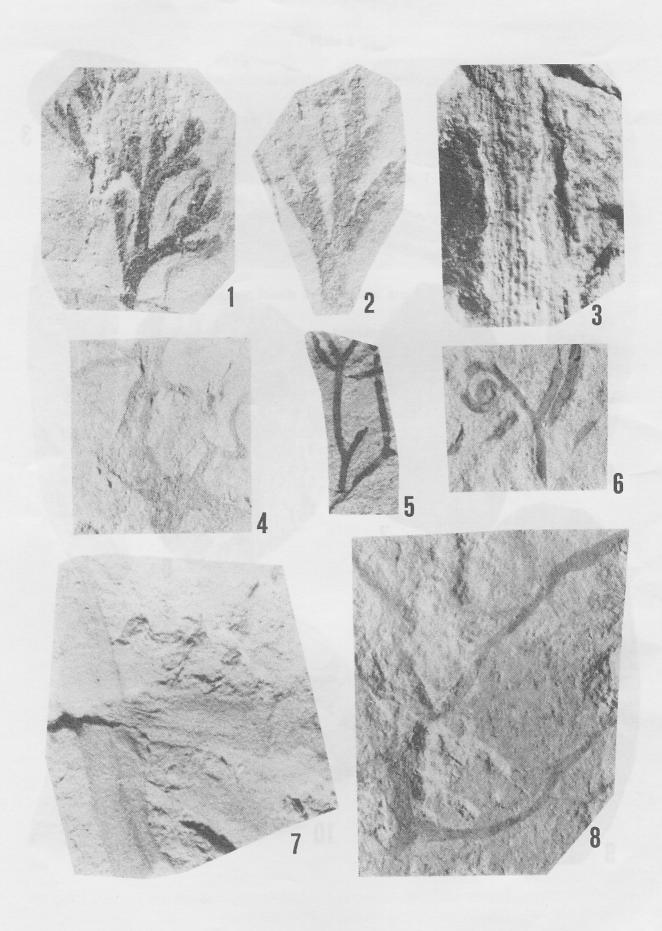

1 & 2	Ostracods from Locality 9
3	Bivalve from Locality 8
4 - 10	Fishes
4 & 5	From Locality 21; 6 from Locality 18; 7 & 8 from Locality 16; 9
	from Locality 9; 10 from Locality 18

Plate II

(All plant fossils in this plate are enlarged)

1 & 2	Protopteridium? sp, from Locality 20
3	Psilophylites? sp, from Locality 11
4 & 8	Zosterophyllum sp, from Locality 10
5 & 6	cf Protopteridium minutum Halle, from Locality 14
7	Taeniocrada sp, from Locality 4'

SPORE-POLLEN FLORA FROM PING CHAU ISLAND MIRS BAY, HONG KONG

PS Nau¹, QQ Jiang² & QJ Wu³

1 Department of Geography and Geology
University of Hong Kong
2 Palaeontological Unit of the Laboratory of the 12th Brigade
of Prospecting and Exploration, Ministry of Geology, China
3 Department of Geology, Zhongshan University
Guangzhou, China

Introduction

The sedimentary rocks of Ping Chau Island, Mirs Bay, include mudstone, siltstone and maristone (Nau 1979). They contain insect- and plant-bearing layers (Williams 1943; Wu & Nau 1989).

Four samples were collected from the island by two of the authors (Wu and Nau) early in July 1987 for palynological analyses. Of these, two were collected from Lan Guo Shui and two from Lung Lok Tsui (Figure 1). The purpose of the present work is to seek more evidence pertinent to the dating of the rock sequence concerned, and this article presents the first result of work on a palynological assemblage from Ping Chau. Palynological analyses were carried out by one of us (Jiang).

Results of spore-pollen analysis

Altogether 123 grains of spore-pollen flora have been examined. They are not very well preserved and taxonomically rather monotonous. The assemblage includes pteridophyte (fern) spores, gymnosperm and angiosperm pollen. The fossil spore-pollen flora examined are given in Table 1. Of the total spore-pollen flora, 77.2% came from Lung Lok Tsui (61% spores, 13% gymnosperms and 3.3% angiosperms), and 22.8% from Lan Guo Shui (13% spores, 6.5% gymnosperms and 3.3% angiosperms).

The assemblage is dominated by pteridophyte spores (74% of the total spore-pollen flora), with those referable to the family Pteridaceae as the most abundant at 81% of this type. Of the above family, *Pterisisporites* sp (39.8%) is the most preponderant. *Pterisisporites distaverrucosus* Jiang also occurs in significant amount at 11%. Less abundant ones include *Pterisisporites undulatus* (5%), *Pterisisporites fantanguluris* (2.4%), *Leptolepidites* sp (0.8%) and *Verrutetraspora elegans* (0.8%).

Gymnosperm pollen (19.5% of the total flora) include *Psophosphaera* sp (7.3%), *Classopollis annulatus* (4.9%) and *Pinus pollenites* sp (4%). There are also *Ephedripites* sp and *Exesioporites* sp occurring in small amounts (1.6% each). Angiosperm pollen, including ? *Plicapollis granulatus* (2.4%), *Ulmipollenites* cf *minor* (1.6%), ? *Plicapollis* sp (0.8%) and *Moideipites* sp (0.8%), etc, are only 6.5% of the total flora.

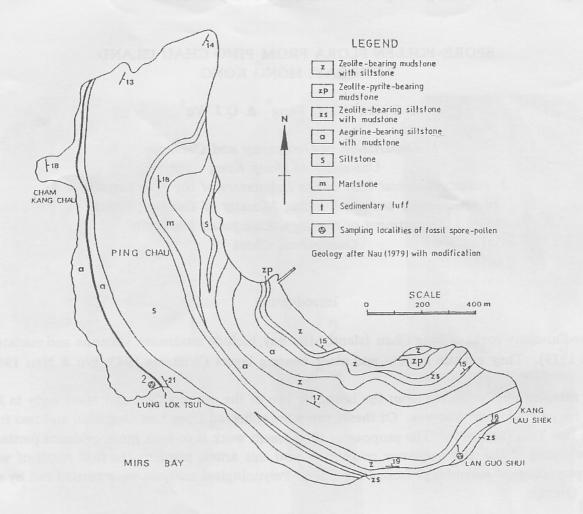


Figure 1 Geological map of Ping Chau Island

Discussion of the palynological flora and age

The fern spores of the family Pteridaceae represented by Pterisisporites distaverrucosus, P fatanguluris, P undulatus and P sp, etc, are common in Early and Late Cretaceous, or from Late Cretaceous to Early Tertiary sediments in Jiangsu, Jiangxi and Yunnan Provinces of China. Jiang points out that Pterisisporites distaverrucosus is a new species known from the Lengshuiwu Formation (Early Cretaceous) in the Xinjiang basin of Jiangxi Province, and Pterisisporites fatanguluris is a new species known from the Taizhou Formation (Late Cretaceous) in Jiangsu Province. Although Pterisisporites sp has the greatest abundance (up to 39.8%, Table 1), it is not considered to have biostratigraphic utility due to its wide time span from Cretaceous to Tertiary. Schizaeoisporites is known from Late Cretaceous deposits in the Jianghan basin (oilfield) in China (Chengdu Institute of Geology 1982), but in Siberia, fern spores referable to the family Schizaeaceae occur in great amount in sediments considered as middle Early -Cretaceous (Markova 1966). Verrutetraspora is generally regarded as Early Tertiary or Late Cretaceous in age, and the species Verrutetraspora elegans is known to be quite well developed in Early Tertiary sediments in South China, but its occurrence here is less than 1%. As Pterisisporites distaverrucosus occurs in significant amount (despite the high percentage of Pterisisporites sp) it can be considered that spores of Early Cretaceous age are relatively abundant.

Table 1 The abundance of spore-pollen flora from Ping Chau Island, Mirs Bay, Hong Kong (1 Lan Guo Shui, 2 Lung Kok Tsui)

Spores and pollen	1	2	%
Pteridophyte spores			
Selaginellaceae			
Neoraistrickis sp			1.6
Lycopodiaceae	10908		THE REAL PROPERTY.
Lycopodiacidites sp			0.8
Lygodiaceae			
Toroisporis sp			0.8
Pteridaceae	90800		di sao
Pterisisporites undulatus Sung et Zheng		•	5.6
Pterisisporites fantanguluris Liu	on the		2.4
Pterisisporites distaverrucosus Jiang		•	11.3
Pterisisporites sp			39.8
Leptolepidites sp	13000		0.8
Verrutetraspora elegans Sung et Zheng			0.8
Schizaeaceae			The state of
Schizaeoisporites kulandyensis (Bolkhovitina) Sung et			2.4
Zheng		56085	283.3
Taxonomic position unknown	10000	1 903	last sun
Undulatisporites pannuceus (Brenner) Singh	- anna		0.8
Divisisporites sp			0.8
Deltoidospora sp			4.0
Verrucosisporites sp			1.6
		0913	
Gymnosperm pollen	HEOR	Transier .	y ela in
Cheirolepidiaceae	i siiqn		
Classopollis annulatus (Verbitskaja) Li			4.9
Dinaceae	a section		
Pinuspollenites sp			4.0
Ephedraceae	To be	8404	1 2 2 3 2
Ephedripites (E) sp	d diese		1.6
Cupressaceae and Taxodiaceae	D-siz	STEEL STEEL	THE RE
Exesipollenites sp			1.6
Taxonomic position unknown	1		100000
Psophosphaera sp			7.3
Angiosperm pollen			
Ulmaceae			
?Ulmoideipites sp			0.8
Ulmipollenites of minor J Groot et R Groot			1.6
Betulaceae			1
? Plicapollis granulatus Sung et Lee			2.4
? Plicapollis sp			0.8
Unknown affinity			0.0
Tricolpites sp			0.8
Theorphics sp			0.0

Table 2 Estimated number of seed-plant and pteridophyte species taxa existing at certain times in the Jurassic and Cretaceous (from N F Hughes 1976)

	Ma	Gymnosperm	Pteridophyte	Angiosperm	
End Cretaceous	65	500	2 000	20 000	
Beginning Cretaceous	135	1 500	1 500	0	
Middle Jurassic	170	1 500	1 000	0	

Among the gymnosperm pollen found, *Psophosphaera* accounts for 7.3% of the total flora, and it is known to dominate the Early Cretaceous spore-pollen flora of the North Jiangsu Oilfield in China (Beijing University 1977). *Classopollis* (which is widespread in the world) is about 5% of the total flora. Geohistorically, it reached two peaks of abundance, in latest Triassic-early Jurassic (Rhaeto-Liassic) and Late Jurassic. However, it has also been recorded in Cretaceous strata in great amount. For example, the Shenhuangshan Formation (middle Lower Cretaceous) in Hunan Province, the Zhoutian Formation (early Upper Cretaceous) in Jiangxi Province, and the Dalangshan Formation (late Upper Cretaceous) in Guangdong Province, have all been reported as having *Classopollis* over 50% (Yu et al 1983). *Pinuspollenites* and *Ephedripites* (4% and 1.6% respectively) have been reported from Quantou Formation (late Early Cretaceous) and Quingshankou Formation (early Late Cretaceous) south of the Songhua River (Yu et al 1983). It seems that gymnosperms of Early Cretaceous are relatively prevalent.

Angiosperm components are greatly subordinate to the pteridophytic and gymnosperm elements. *Ulmoideipites, Ulmipollenites* and *Plicapollis* are widespread and occur in considerable amounts in the Late Cretaceous and Paleogene in North America and Asia. However, they occur in small amounts (from less than 1% to 2%) in this study.

Summary

From the above data it is evident that the palynological flora is composed of predominantly pteridophytes in company with relatively abundant gymnosperms. Palaeobotanical studies have shown that Jurassic-Cretaceous palynofloras are dominated by ferns and gymnosperms, and those of the Late Cretaceous by angiosperms (Table 2). As there are some Late Cretaceous to Paleogene elements, we consider that the age of the Ping Chau rocks is late Early Cretaceous (Albian) to early Late Cretaceous (Cenomanian), and is in concordance with the age proposed earlier based on macroflora (Wu & Nau 1989).

References

BEIJING UNIVERSITY (1977). Palaeopalynological analysis (In Chinese)

CHENGDU INSTITUTE OF GEOLOGY (1982). Textbook on Micropalaeontology (In Chinese)

HUGHES N F (1976). Palaeobiology of Angiosperm Origins. Cambridge University Press

- MORKOVA L G (1966). Plant spores of the family Schizaeaceae in Cretaceous deposits of the Western Siberian depression and their significance for stratigraphy. In: About the method of paleopalynological research. N A BOLKHOVITINA et al (eds). 2nd International Palynological Conference Leningrad. VSEGEI p 214-235 (In Russian)
- NAU PS (1979). Geological notes on the sedimentary rocks of Ping Chau Island, Mirs Bay, Hong Kong. Annals of the Geographical, Geological and Archaeological Society, University of Hong Kong No 7 p 33-41
- WILLIAMS M Y (1943). The stratigraphy and palaeontology of Hong Kong and New Territories. Transactions of Royal Society of Canada Vol 37 Section IV p 93-117
- WU Q J & NAU P S (1989). The characteristics of fossil plants and age of the strata of Ping Chau Island, Mirs Bay, Hong Kong. Geological Society of Hong Kong Newsletter Vol 7 Pt IV p 2-11
- YUJX, GUOZY & MAOSZ (1983). Cretaceous palynological assemblages from the district south of the Songhua River. In: *Professional Papers of Stratigraphy and Palaeontology*. EDITORIAL COMMITTEE OF PROFESSIONAL PAPERS OF STRATIGRAPHY AND PALAEONTOLOGY, CHINESE ACADEMY OF GEOLOGICAL SCIENCES. Geological Publishing House, Peking. No 10 p 11-18 (In Chinese)

BOAT TRIPS, SEPTEMBER-OCTOBER 1990

Sunday 2 September. WONG WAN CHAU (DOUBLE ISLAND). Stop 1: Tung Wan (East Beach, for the geology of the eastern end of the island; sandy beach; swimming and snorkelling (coral in the bay). Stop 2: Wong Wan (optional), for geology and walking around the west end of the island, with excellent shoreline exposures of the Port Island Formation

Sunday 9 September. CHEK LAP KOK. Joint trip with the Hong Kong Archaeological Society and the Hong Kong Historical Society. Three archaeological sites, including Tang Dynasty lime kilns and Tin Hau Temple c 1820; old kaolin mine; granite freestone workings; quartz veins (once worked); variety of dykes; current borrow area and trial embankment; sandy beaches for swimming.

Sunday 30 September. CHEK CHAU (PORT ISLAND). Exploration of the island; swimming at the anchorage in a small bay near the northeastern tip; exposures of Port Island Formation along the eastern coast; unconformable contact with the Repulse Bay Volcanic Group exposed near the southwestern tip.

Sunday 21 October. KAT O CHAU (CROOKED ISLAND) and AP CHAU (ROBINSON ISLAND). Kat O Formation exposures on the north coast of Kat O and on Ap Chau; coastal geomorphology; no good swimming.

All the trips, except Chek Lap Kok, start from Ma Liu Shui ferry pier at 9:30 am, return at about 5:00 pm. The Chek Lap Kok trip starts from Blake pier at 9:00 am, return about 5:00 pm. Contact Mr P S Nau at Hong Kong University on 859-2825 to see if places are available. Future trips include TAI O (11 November), SHARP PEAK (9 December) and EAST GUANGDONG (23-31 December)

18 MONTHS WITH THE GEOLOGICAL SURVEY UNIT (1967-68)

S C Lee

Building and Lands Department Hong Kong Government

At the instigation of my Class I superior and Section Head, saying that I should have a temporary change of working environment, and suggesting that I join the Geological Survey Unit to work as a field assistant, I applied, little knowing that the new mission would take me 18 months. At the selection interview by AS of Survey (later known as GLS) I was told the exact nature of work and the duration. Since I was supposed to have applied with full knowledge, although I didn't have that knowledge beforehand, I had to accept the challenge if selected, for at that moment I could not retreat from it.

At last I was told to join the Unit in January 1967, with Dr E A Stephens, Senior Geologist from IGS of UK, heading the Unit within the CLSO and having a survey labourer and a driver to staff the Unit. Acting as an assistant to Dr Stephens and his liaison officer, I had to organise all sorts of things for him such as field trip planning and the necessary information prior to each field trip, equipment and air photos, and keeping an office register of rock specimens at the end of each trip and recording the information on the office record copies of maps. In any field trip I had to instruct the driver where to go to for the start of each trip and where to pick the team up at the finish of each trip. When making field trips the Senior Geologist with me and the survey labourer would walk over the area under survey to examine the rock types and collect specimens and, when required, take dip and strike for field note writing.

In addition to the geological survey task I had to carry out a mineral survey; that is, collecting sand samples at tributaries of water courses, recording their positions and soil conditions and taking the pH of the water at each location. This was mainly done with the help of air photos for easy identification and transfer of position when coming back to the office.

Later in the year another geologist, Dr P M Allen, came from the UK and another team was formed when Dr Allen selected Henry Lai as his field assistant, recruiting one survey labourer and one driver for the task. So Dr Allen was mainly responsible for the mapping of the Hong Kong Island and Lantau, while Dr Stephens covered the mainland, particularly the New Territories.

It was beyond my expectation that the job would be so demanding, doing a lot of walking and climbing for long hours in isolated mountains and looking for contacts of different rock types as verification of office photogeology study. Indeed, it was very interesting and remarkable to note the outcome of photogeology matching with field findings. Throughout the period with the Unit I had opportunities to visit the graphite mining site at the Brother Islands, Needle Hill for iron ores, study the geology along the proposed water tunnel from Tai Lam Chung to Tuen Mun looking for a possible fault which might cause leakage, and study the Airport runway rock

Editor's Note: This article was first printed in the Lands Department Newsletter and is reproduced with the permission of the author.

aggregate degeneration. Other than the normal duties as a field geologist, Dr Stephens also acted as a consultant to the Director of Engineering Development, so I had to obtain all necessary information for him prior to meeting these government officials requiring his expertise/advice.

In the office, between field trips, I had to transfer all field data, such as rock specimen position, dip and strike, onto the office working sheets, keeping a library of these specimens, and make silt preparation from sand samples, to be labelled and sent to the UK for chemical analysis regarding element content in parts per million, this data to be represented on separate map sheets. Some chosen rock specimens had to be despatched to UK for further study and age determination, while most of them had thin sections made locally in the University of Hong Kong (Department of Geography) for study under the microscope. Visits made to spots like Lai Chi Chong and Ping Chau for plant fossils were very interesting, and it was almost like an archaeologist's job digging with great care; the search was a fruitful one, but the effort made on Ma Sze Chau looking for animal fossils was not a success. In the latter case, we had to grind the sedimentary rock collected from Ma Sze Chau to very fine particles for examination under the microscope.

After I had spent about 1 year on this type of work, Dr Stephens had to return to UK to take up a higher position in the Directorate grade of IGS, and so I had to spend the remaining 6 months or so on a different job which had been started earlier. It was the retrieval of information from site investigation reports submitted by authorised architects describing borehole information, such as the position, log of the core and penetration information, in connection with final recommendations on piling depth. Indeed, after having received a short period of training I had to carry on the job on my own, with assistance from Dr Allen only when there was any difficulty arising. The final end product was a subsurface map using the large scale survey sheets as the data base for recording this information. The conclusion I had come to after this exercise was to drill boreholes at desirable locations at government expense to confirm the depth to bedrock, and if sufficiently dense enough, some sort of contour map could be derived for reference for any future engineering work or foundation design.

There were some unforgettable events that happened to me during my period with the Geological Survey Unit. To name a few, the torrential flow down stream from Bride's Pool to the Plover Cove Reservoir, after a downpour of rain, almost took away my life had it not been for a prompt rescue by Mr Chow Yiu-pong, who was quick enough to grasp my hammer stretching to him for help. To Mr Chow I owe my life, and not many realise the danger encountered by field staff unless one really experiences that kind of happening.

Another event was my trip sand sampling along the border for the mineral survey, which was indeed one full of excitement. I had to get military escort throughout the mission as the situation was still tense soon after the Sha Tau Kok incident, and we had to be extremely cautious and keep silent so as not to create any sign that would cause irritation across the border.

All in all, an interesting period in my career, and despite the hardships endured it gave me a great deal of job satisfaction and increased my knowledge of geology and geological studies considerably.

EPHEMERA

South China Morning Post, Wednesday 27 June 1990, Environment Watch by Jamie Allen

"Never let it be said that geologists do not have a sense of the dramatic. On Sunday the Geological Society of Hongkong is going on a 'farewell trip to the doomed island of Chek Lap Kok, which will be swallowed up in the near future by the new airport development', according to a flyer. The Society hopes to 'salvage some of the remaining rock crystal for which the island is well known'. The trip starts from the Tuen Mun (Castle Peak Bay) kaido pier at 10:30 am."

REPORT ON FIELD TRIP TO TSING SHAN SUNDAY 1 JULY 1990 (ABORTED TRIP TO CHEK LAP KOK)

M J Atherton & R L Langford

Some 30 members turned up at Tuen Mun Ferry Pier, Butterfly Estate, at 10:15 am for the kaido to Chek Lap Kok, and a day's field excursion led by Dr Langford of the Hong Kong Geological Survey. However, in spite of assurances from the HK Tourist Association that the boat would depart from there at 10:30 am, it could not be found. At 10:20 am, following searching enquiries, it was discovered that the kaido departed from Castle Peak Bay on the other side of Tuen Mun. A frantic dash by taxis enabled members to view the kaido sailing away on the horizon.

Fruitless attempts were made to find another boat, so while 10 members retired for a nearby restaurant, 20 members decided to look along the flanks of Tsing Shan. To add insult to injury, while some members returned to the car park at Butterfly Estate, a tremendous downpour made those waiting think twice about the wisdom of fieldwork. However, up at Tsing Shan monastery, where some enjoyed a vegetarian lunch, the day started to look much better.

Following the monastery visit we were taken by Dr Langford on an illustrated walk along the recently constructed panoramic path which runs along the slopes of Tsing Shan (Castle Peak). The walk proved extraordinarily interesting as it follows exposures of the Tsing Shan Formation (conglomerates, sandstones, siltstones), and crosses the mylonite zone on the intrusive contact between the granite of Castle Peak and the Tsing Shan Formation. Unfortunately, many of the best exposures of the sedimentary strata are temporary, so excellent cleavage/bedding intersections will be lost beneath the concrete. However, the path now makes accessible an area that was notoriously difficult to get into, but in which the relationship between the pluton and older sedimentary strata is perhaps the best of any in the Territory. Below the Tsing Shan Formation could be seen the notorious Area 19, where lobate debris flows occur on the deeply weathered andesite of the Tuen Mun Formation.

Some members returned to the monastery and their cars, while others scrambled down a steep track to return by LRT to the ferry pier for a hoverferry to Hong Kong. Three vehicles with weary, and in some cases sunburnt travellers were forced to make an unscheduled stop at a goose restaurant in Sham Tseng, where the quality of Hong Kong's beverage industry was sampled. All in all a successful day rescued from potential disaster. Anyone wishing to look at the geology of Tsing Shan would be well advised to follow our route as soon as possible.

GEOLOGICAL SOCIETY OF HONG KONG PUBLICATIONS LIST

BULLETIN No 1 (1984). Ed W W S Yim. Geology of Surficial Deposits in Hong Kong. 177 p BULLETIN No 2 (1985). Ed I McFeat-Smith. Geological Aspects of Site Investigation. 236 p BULLETIN No 3 (1987). Ed P G D Whiteside. The Role of Geology in Urban Planning. 600 p MARINE GEOLOGY OF HONG KONG AND THE PEARL RIVER MOUTH (1985). Eds P G D Whiteside and R S Arthurton. 96 p

MARINE SAND AND GRAVEL RESOURCES OF HONG KONG (1988). Eds P G D Whiteside and N Wragge-Morley. 221 p

ABSTRACTS No 1. Abstracts of papers presented at the meeting on Geology of Surficial Deposits in Hong Kong, September 1983. 79 p - OUT OF PRINT

ABSTRACTS No 2. Abstracts of papers presented at the conference on Geological Aspects of Site Investigation, December 1984. 50 p

ABSTRACTS No 3. Abstracts of papers presented a meeting on Sea-level Changes in Hong Kong During the Last 40 000 Years, May 1986. 51 p

ABSTRACTS No 4. Abstracts of papers presented at the conference on The Role of Geology in Urban Development, December 1986. 65 p

ABSTRACTS No 5. Abstracts/Extended Abstracts of six papers presented at a meeting on Future Sea-level Rise and Coastal Development, April 1988. 79 p

ABSTRACTS No 6. Abstracts of papers presented at the conference on Karst Geology in Hong Kong, January 1990. 58 p

NEWSLETTER. Published regularly; bi-monthly from November 1982 to November 1985, quarterly in 1986, 1987 and 1989, and as a single issue for 1988

 Vol 1 (7 issues) 1982–3
 Vol 2 (6 issues) 1984

 Vol 3 (6 issues) 1985
 Vol 4 (4 issues) 1986

 Vol 5 (4 issues) 1987
 Vol 6 (1 issue) 1988

 Vol 7 (4 issues) 1989
 Vol 8 (2 issues) 1990

Each Newsletter contains short technical articles in addition to Society and other news; A4 format, in English with an occasional Chinese summary section

Prices (including postage in Hong Kong):

BULLETIN No 1	HK\$	60	(Members	HK\$	40)	
BULLETIN No 2	HK\$	70	(Members	HK\$	50)	
BULLETIN No 3	HK\$	130	(Members	HK\$	100)	
MARINE GEOLOGY	HK\$	30				
ABSTRACTS No 2	HK\$	10				
ABSTRACTS No 3	HK\$	15				
ABSTRACTS Nos 4, 5 & 6	HK\$	20				
NEWSLETTER, Single Issue (subje	ect to	availabili	ity)			
Vols 1-3	HK\$	10				
Vols 4-6	HK\$	20				
Vol 7	HK\$	25				

Annual Society Subscription HK\$ 100 (Newsletter free to members) (including overseas postage)

Cover Photograph: Gully in deeply weathered granite near the northeastern end of Tai Lam Chung Reservoir (82235E 82855N). Courtesy of R Shaw (see article by Ruxton & Peart in this issue)

Publications are available from:

The Secretary
Geological Society of Hong Kong
c/o Department of Geography and Geology
University of Hong Kong
Pokfulam Road
HONG KONG

ISSN 1010-335X